3.2689 \(\int \frac {x^{-1+\frac {3 n}{2}}}{\sqrt {a+b x^n}} \, dx\)

Optimal. Leaf size=62 \[ \frac {x^{n/2} \sqrt {a+b x^n}}{b n}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} n} \]

[Out]

-a*arctanh(x^(1/2*n)*b^(1/2)/(a+b*x^n)^(1/2))/b^(3/2)/n+x^(1/2*n)*(a+b*x^n)^(1/2)/b/n

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {355, 288, 206} \[ \frac {x^{n/2} \sqrt {a+b x^n}}{b n}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} n} \]

Antiderivative was successfully verified.

[In]

Int[x^(-1 + (3*n)/2)/Sqrt[a + b*x^n],x]

[Out]

(x^(n/2)*Sqrt[a + b*x^n])/(b*n) - (a*ArcTanh[(Sqrt[b]*x^(n/2))/Sqrt[a + b*x^n]])/(b^(3/2)*n)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 355

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[p]}, Dist[(k*a^(p + Simplify[
(m + 1)/n]))/n, Subst[Int[x^(k*Simplify[(m + 1)/n] - 1)/(1 - b*x^k)^(p + Simplify[(m + 1)/n] + 1), x], x, x^(n
/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p + Simplify[(m + 1)/n]] && LtQ[-1, p, 0]

Rubi steps

\begin {align*} \int \frac {x^{-1+\frac {3 n}{2}}}{\sqrt {a+b x^n}} \, dx &=\frac {(2 a) \operatorname {Subst}\left (\int \frac {x^2}{\left (1-b x^2\right )^2} \, dx,x,\frac {x^{n/2}}{\sqrt {a+b x^n}}\right )}{n}\\ &=\frac {x^{n/2} \sqrt {a+b x^n}}{b n}-\frac {a \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^{n/2}}{\sqrt {a+b x^n}}\right )}{b n}\\ &=\frac {x^{n/2} \sqrt {a+b x^n}}{b n}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 81, normalized size = 1.31 \[ \frac {\sqrt {b} x^{n/2} \left (a+b x^n\right )-a^{3/2} \sqrt {\frac {b x^n}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a}}\right )}{b^{3/2} n \sqrt {a+b x^n}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + (3*n)/2)/Sqrt[a + b*x^n],x]

[Out]

(Sqrt[b]*x^(n/2)*(a + b*x^n) - a^(3/2)*Sqrt[1 + (b*x^n)/a]*ArcSinh[(Sqrt[b]*x^(n/2))/Sqrt[a]])/(b^(3/2)*n*Sqrt
[a + b*x^n])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 114, normalized size = 1.84 \[ \left [\frac {2 \, \sqrt {b x^{n} + a} b x^{\frac {1}{2} \, n} + a \sqrt {b} \log \left (2 \, \sqrt {b x^{n} + a} \sqrt {b} x^{\frac {1}{2} \, n} - 2 \, b x^{n} - a\right )}{2 \, b^{2} n}, \frac {\sqrt {b x^{n} + a} b x^{\frac {1}{2} \, n} + a \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x^{\frac {1}{2} \, n}}{\sqrt {b x^{n} + a}}\right )}{b^{2} n}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*sqrt(b*x^n + a)*b*x^(1/2*n) + a*sqrt(b)*log(2*sqrt(b*x^n + a)*sqrt(b)*x^(1/2*n) - 2*b*x^n - a))/(b^2*n
), (sqrt(b*x^n + a)*b*x^(1/2*n) + a*sqrt(-b)*arctan(sqrt(-b)*x^(1/2*n)/sqrt(b*x^n + a)))/(b^2*n)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {3}{2} \, n - 1}}{\sqrt {b x^{n} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="giac")

[Out]

integrate(x^(3/2*n - 1)/sqrt(b*x^n + a), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 64, normalized size = 1.03 \[ -\frac {a \ln \left (\sqrt {b}\, {\mathrm e}^{\frac {n \ln \relax (x )}{2}}+\sqrt {b \,{\mathrm e}^{n \ln \relax (x )}+a}\right )}{b^{\frac {3}{2}} n}+\frac {\sqrt {b \,{\mathrm e}^{n \ln \relax (x )}+a}\, {\mathrm e}^{\frac {n \ln \relax (x )}{2}}}{b n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(-1+3/2*n)/(b*x^n+a)^(1/2),x)

[Out]

1/b/n*exp(1/2*n*ln(x))*(b*exp(1/2*n*ln(x))^2+a)^(1/2)-a/b^(3/2)/n*ln(b^(1/2)*exp(1/2*n*ln(x))+(b*exp(1/2*n*ln(
x))^2+a)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {3}{2} \, n - 1}}{\sqrt {b x^{n} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(3/2*n - 1)/sqrt(b*x^n + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^{\frac {3\,n}{2}-1}}{\sqrt {a+b\,x^n}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^((3*n)/2 - 1)/(a + b*x^n)^(1/2),x)

[Out]

int(x^((3*n)/2 - 1)/(a + b*x^n)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 9.86, size = 49, normalized size = 0.79 \[ \frac {\sqrt {a} x^{\frac {n}{2}} \sqrt {1 + \frac {b x^{n}}{a}}}{b n} - \frac {a \operatorname {asinh}{\left (\frac {\sqrt {b} x^{\frac {n}{2}}}{\sqrt {a}} \right )}}{b^{\frac {3}{2}} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1+3/2*n)/(a+b*x**n)**(1/2),x)

[Out]

sqrt(a)*x**(n/2)*sqrt(1 + b*x**n/a)/(b*n) - a*asinh(sqrt(b)*x**(n/2)/sqrt(a))/(b**(3/2)*n)

________________________________________________________________________________________